
REPAST STATECHARTS GUIDE

JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

0. Before We Get Started

Before we can do anything with Repast Simphony, we need to make sure that we have
a proper installation of the latest version. See the Repast Requirements Web Page for
instructions on downloading and installing Repast Simphony and Java.1

1. Getting Started with Statecharts

Agent states and transitions between states are an important abstraction in agent-based
modeling. While it is possible for Repast Simphony users to create their own implemen-
tation of state-based agent behaviors (e.g., by adapting the State pattern in Gamma et
al. 19942) and even agent state visualizations, the effort involved in doing so is usually
prohibitive. By integrating an agent statecharts framework into Repast Simphony, we
made it easy for users of all levels to take advantage of this important modeling paradigm.
Statecharts are visual representations of states and the transitions between those states3.
Statecharts can be very effective in visually capturing the logic within agents and quickly
conveying the underlying dynamics of complex models.

Figure 1 shows a simple example of a statechart created with the Repast Simphony stat-
echarts framework. The logic embedded in the diagram is mapped directly to the execution
logic of an agent-based model. The benefits of the Repast Simphony statecharts frame-
work include: improved clarity of a model’s logic for model design, improved turnaround
times for developing complex state based agent models, and the ability to convey in a
compelling manner the internal state of agents as a simulation evolves to both experienced
agent-modelers and to non-modelers alike. In the rest of this guide we will present the
Repast Simphony statecharts framework.

1.1. Adding Statecharts. A statechart can be added to any Java, Groovy or ReLogo
class4. Right-clicking the class of interest and selecting New → Statechart Diagram (Fig-
ure 2) will bring up the new statechart wizard (Figure 3). The editable new statechart
wizard elements are:

1https://repast.github.io/requirements.html
2Gamma, E., R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. illustrated ed. Addison-Wesley Professional, 1994.
3Statecharts were first proposed by Harel in Harel, D., 1987. Statecharts: A visual formalism for

complex systems. Sci. Comput. Program., 8(3), pp.231-274.
4For example, any of the agent classes that are created in the other Repast Simphony Getting Started

guides can have statecharts added to them.

1

https://repast.github.io/requirements.html
https://repast.github.io/requirements.html


2 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 1. An example statechart created with the Repast Simphony visual
statecharts editor.

File Name: This is the .rsc statechart file name that will be edited with the visual
statecharts editor.

Name: The display name of the statechart.
Class Name: The name of the statechart class which will be generated.
Package: The package name within the src-gen source folder where the statechart

class source code will be generated.
Agent Class: This is the agent class that will be associated with the statechart.

After accepting or modifying the defaults, click the Finish button. This injects a new
statechart field into the selected agent class (see Listing 1). The @ProbedProperty annota-
tion (Line 8 in Listing 1) connects the Name element of the statechart to the display name
that will be shown in the probe panel in the simulation runtime GUI (Section 5). Line 9 in
Listing 1 calls the Statechart.createStateChart(Agent,double) method with 0 as the
second argument. This will schedule an Agent class’s statechart to begin as soon as the
Agent instance is created. Alternatively, you can specify a numerical value greater than 0



REPAST STATECHARTS GUIDE 3

Figure 2. Creating a new statechart.

Figure 3. New statechart wizard.



4 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

(in units of simulation ticks) to delay the statechart activation for that number of ticks.
If there is a need for a statechart to begin not at a predetermined time but, for example,
based on some model logic, Line 9 would be modified to read:

Statechart statechart = Statechart.createStateChart(this);

which just instantiates the statechart but doesn’t schedule it to begin at any time. Then,
when the conditions for the statechart to begin are met, the statechart can be scheduled
to begin with:

StateChartScheduler.beginNow(statechart);

for immediate scheduling or:

StateChartScheduler.beginLater(later, statechart);

for delayed scheduling at a time later. The statechart field does not have to be instan-
tiated upon agent class creation. So if there is a situation when not all of a simulation’s
agents will be needing their statecharts and there is a desire for conserving the simulation’s
memory footprint, the statechart instantiation (i.e., Statechart.createStateChart) can
be delayed until needed.

When a statechart is no longer needed, it can be stopped via:

statechart.stop();

This will deactivate all scheduled transition resolution activities. If there is a need for
memory conservation, simply doing:

statechart = null;

after stopping the statechart, will remove the reference to the statechart, freeing it up for
garbage collection.

1 package statechartsModel;

2

3 import statechartsModel.chart.Statechart;

4 import repast.simphony.ui.probe.ProbedProperty;

5

6 public class Agent {

7

8 @ProbedProperty(displayName="Statechart")

9 Statechart statechart = Statechart.createStateChart(this , 0);

10

11 }

Listing 1. Agent class with the default injected statechart field.

1.1.1. A note on statechart scheduling. Statecharts have two associated scheduling behav-
iors. The first is the one described above which deals with when a statechart should begin
being active. If a time tick is specified, a statechart is scheduled to be active at the time
tick with highest model action priority. That is, the statechart is activated before any other



REPAST STATECHARTS GUIDE 5

scheduled model behaviors are run. In this way all scheduled actions that occur during a
time tick occur after the statechart is active.

The second, and more prevalent scheduling activity, is that which governs the resolving
of statechart triggers. This dictates when a statechart will check for transition conditions
and, consequently, when associated state changes can occur. This resolve scheduling occurs
with the lowest model action priority, meaning that all other scheduled activities for a
particular time tick will run before any statechart resolutions occur. This allows any state
based activities to depend on the model state after all other possible model changes have
already occurred.



6 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

1.2. Statecharts Editor. Creating a new statechart will bring up the newly created blank
statechart editor, which we describe next. The statecharts editor is divided into three main
panels (Figure 4). The first (Figure 4a) is the statecharts workspace area. This is where the
visual elements of a statechart are created and arranged. The palette panel (Figure 4b)
shows the available statechart elements that can be used in the statecharts workspace5.
Clicking on an element in the palette panel and then clicking on the statecharts workspace
will create an instance of that element in the workspace. To create transitions between
elements, you can click on the Transition arrow in the palette and then click and drag from a
source element to a target element. The properties panel (Figure 4c) shows the properties
of the element selected in the statecharts workspace6. If, as in Figure 4, no element is
selected, the properties of the statechart itself are shown. In addition to displaying element
properties, the panel is also where the properties of elements can be edited. A statechart
has a priority which indicates the order in which it will be resolved with respect to other
statecharts (see red box in Figure 5). So, for example, if an agent has two statecharts
(A and B) and statechart A should be resolved before statechart B, giving statechart A a
higher priority will ensure that this occurs.

There is a contextual menu approach for adding elements to the workspace as well.
Simply hovering over an area in the workspace will reveal a contextual menu of the available
elements appropriate for the region pointed to. If the mouse pointer is on an empty space
in the workspace background, you will see the contextual menu in Figure 6. If the pointer
is on a state, you will see transitions shortcuts like in Figure 7, the left symbol indicating
a connection to this state and the right symbol a connection from this state. Finally, if the
pointer is inside a composite state7, you will see the contextual menu in Figure 8.

5Sections 2 and 3 will cover these elements in detail.
6If the properties panel is not showing, right-click on the canvas and choose “Show Properties view” or

double-click on any statechart element.
7A composite state is a state that contains other states.



REPAST STATECHARTS GUIDE 7

Figure 4. The components of the statecharts visual editor. a) The
workspace area where the statechart elements are created and arranged.
b) The palette panel of available elements, including selection, zoom and
note tools. c) The properties panel of the selected statechart element in the
workspace (a). If no element is selected, the properties of the statechart
itself are displayed.



8 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 5. The statechart properties panel with the priority element indi-
cated by a red box.

Figure 6. The default contextual menu when the pointer is on a blank
area of the workspace.

Figure 7. The transitions shortcuts, circled in red, for making connections
to (left) and from (right) the state.



REPAST STATECHARTS GUIDE 9

Figure 8. The contextual menu when the pointer is inside a composite state.



10 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

2. States

One of the fundamental building blocks of statecharts are states. Here we introduce the
different types of states that exist within the Repast Simphony statecharts framework.

2.1. Entry State Marker.
Every statechart must have an entry state marker. This defines point of entry into a

statechart takes when the statechart is activated.

2.2. Simple State.
A simple state looks like Figure 9. At any one point in time within an active statechart,

one and only one of the simple states will be active. In addition to their ID, simple states
can have On Enter and On Exit actions defined, as seen in the simple state properties
panel in Figure 10. These actions are triggered when entering or exiting the simple state,
respectively. The keywords available within the two action blocks are:

agent: This is the agent that contains the statechart. Any method (e.g., customMethod)
defined on the agent can be invoked through this reference (e.g., agent.customMethod()).

state: This is the state itself. For example, the state’s ID can be accessed via
state.getId().

params: This is the model’s Parameters object. As an example, a double valued
parameter dParam can be retrieved with: params.getDouble("dParam")8.

The action block editor supports syntax highlighting, code suggestion and auto com-
pletion. So, for example, entering “agent.” in the editor will trigger a pop-up window
displaying all the methods defined on that agent. Figure 10 illustrates this pop-up behav-
ior when invoked on an example agent. The pop-up window can also be triggered via a
CTRL+Space key shortcut.

As is the case with all types of action blocks, their logic can be specified using Java,
Groovy or ReLogo. All action blocks also statically import repast.simphony.essentials.-
RepastEssentials and repast.simphony.random.RandomHelper, making the many con-
venience methods directly callable (i.e., nextDouble() instead of RandomHelper.nextDouble()).
If additional imports are required, these can be specified in the imports tab. Imports should
be specified one-per line, ending with a semi-colon. Specifically, any Java, Groovy or ReL-
ogo code can be used to express the behavior that should be executed upon entry to or
exit from the state9.

8See the source or JavaDoc for repast.simphony.parameter.Parameters for all of the available meth-
ods.

9When using the ReLogo option, the agent parameter is implicit so writing customMethod() is equiv-
alent to agent.customMethod().



REPAST STATECHARTS GUIDE 11

Figure 9. Simple state.

Figure 10. Simple state properties.



12 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 11. Composite state.

2.3. Composite State.
Composite states are used to nest elements within a statechart. Figure 11 shows an

empty composite state and Figure 12 shows the properties panel for composite states,
which is identical to that of the simple states in that On Enter and On Exit actions can be
defined. The difference between composite and simple states lies in the fact that composite
states can include the following elements as sub-elements:

• Simple state (Section 2.2)
• Composite state (Section 2.3)
• Initial state marker (Section 2.4)
• History state (Section 2.5)
• Final state (Section 2.6)
• Branching state (Section 2.7)

Whenever a sub-element is active, the composite state containing that sub-element will be
active as well. If a transition is made from outside of a composite state directly to a sub-
element, the composite state will be entered prior to its sub-elements. In a similar manner,
if a transition is followed from a sub-element out of the composite state, the composite
state will be exited after the sub-elements are exited.



REPAST STATECHARTS GUIDE 13

Figure 12. Composite state properties.



14 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 13. Initial state marker (within a composite state).

Figure 14. Shallow (left) and deep (right) history states (within a com-
posite state).

2.4. Initial State Marker.
Any composite state that has a transition ending at it or contains history states must

define an initial state marker. The initial state marker points to the element within the
composite state that should be entered upon entering the composite state.

2.5. History State.
There are two types of history states, shallow and deep (Figure 14). When a shallow

history state is entered, the last active element within the enclosing composite state at the
same hierarchical level of the history state is re-entered. For a deep history state, the last
active simple state within the enclosing composite state, no matter at what level of the
nesting hierarchy, is entered. In both cases if there was no previously active state, the state
pointed to by the initial state marker is entered. Figure 15 shows the properties panel for
a (shallow) history state. Only an On Enter element can be defined since history states
are never directly exited.

Figure 16 shows an example statechart with shallow and deep history states defined.
If the transition going from State 2 to External State 1 is followed, the Base Composite
State will be re-entered via the shallow history state. Since shallow histories only track the
last active state at the same hierarchical level within the enclosing composite state (Base
Composite State), the shallow history state will indicate that the Internal Composite State



REPAST STATECHARTS GUIDE 15

Figure 15. The properties panel for a shallow history state. A deep history
state would have the same properties panel except that the Shallow element
would be unchecked.

was the last active element and so State 1 will be entered. On the other hand, if the State
2 to External State 2 transition is followed and the Base Composite State is re-entered via
the deep history state, State 2 will be entered, since this was the last active simple state
within the Base Composite State.



16 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 16. An example statechart demonstrating the differences between
shallow (top) and deep (bottom) history states. The dashed red arrows
indicate the paths taken from each of the history states.



REPAST STATECHARTS GUIDE 17

Figure 17. The properties panel for a final state.

2.6. Final State. A final state marks the end of all activities for a statechart. When
a final state is entered, no further states will be visited and no transitions will be triggered.
Figure 17 shows the properties panel for a final state. Only an On Enter element can be
defined since final states are never exited.



18 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 18. A branching state with one incoming and two outgoing transitions.

Figure 19. The properties panel for a branching state.

2.7. Branching State.
Branching states represent choices, or logical branching, within statecharts (Figure 18).

Every branching state must define one outgoing Default transtion, where the rest of the
outgoing transitions are Condition transitions (Section 3.4). The Condition transitions are
checked for validity and, if valid conditions are found, the transitions’ priorities dictate
the transition that is followed. If no valid transitions are found, the Default transition is
followed. Figure 19 shows the properties panel for a branching state. Since a branching
state is entered and immediately exited, nothing other than the state’s ID can be specified.



REPAST STATECHARTS GUIDE 19

Figure 20. Regular transi-
tion between states 1 and 2.

Figure 21. Self transition in-
ternal to State 3.

Figure 22. The transition properties panel Self Transition check box,
marked with a red rectangle.

3. Transitions

Transitions between states make up the other fundamental building block of statecharts.
In this section we introduce the different types of transitions that can be used within the
Repast Simphony statecharts framework.

There are two overall types of transitions, regular transitions (Figure 20) which connect
different states and self transitions (Figure 21) which are internal to a state10. There are
a number of different transition trigger types, demonstrated in the transition properties
panel in Figure 23 (these will be discussed below in further detail).

For any transition an On Transition action can be defined (see Figure 24). This action
will be executed whenever the transition is traversed. The code editor for transition action
blocks works the same way as the state’s On Enter and On Exit action blocks. Autocom-
plete, syntax highlighting, and so forth are all supported. The keywords available within
the On Transition action block are:

agent: This is the agent that contains the statechart.
transition: This is the transition itself. For example, the transition’s source state

can be accessed via: transition.getSource()11.

10You can also define a regular transition that begins and ends at the same state. Unlike the self transition
case, each time the regular transition is taken, the state will be exited and subsequently re-entered. You
can toggle between a self and regular transition by toggling the Self Transition check box in the transitions
properties panel (see Figure 22).

11See the source or JavaDoc for repast.simphony.statecharts.Transition for all of the available
methods.



20 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 23. The properties panel showing the different types of transitions
that are available.

params: This is the model’s Parameters object.

For almost all types of transitions12 a Guard condition can be defined (see Figure 25). A
Guard condition is an additional boolean condition that has to be satisfied for a transition
that is valid to be actually considered as a candidate for traversal. This condition is
specified by a block of code that returns a boolean and the keywords available in a Guard
condition are the same as those in an On Transition action block.

When there is more than one valid transition ties are broken using the priority of the
transition. If the priorities of valid transitions are equal then one of the transitions will be
chosen with a uniform random probability. The priority of a transition can be specified in
the transition’s properties panel.

Regular transitions can be divided into zero time transitions and non-zero time tran-
sitions13. For zero time transitions when a new state is entered, if there is a valid zero
time transition out of it, that transition is followed immediately (with ties broken via pri-
orities as usual). Always (Section 3.1), Condition (Section 3.4) and Message (Section 3.6)
transition triggers are zero-time transitions.

Within a state, transitions are resolved starting with self transitions and proceeded by
regular transitions.

Every transition has a polling time associated with it. This indicates the frequency
(in units of simulation ticks) with which the transition is polled for validity. After the
initial polling, the polling time can be modified within any action block with the call to
transition.setNextPollingTime(double). This way, a transition can be first polled at
one polling time and at different polling time(s) subsequently14.

12All transitions except default transitions out of branching states.
13All self transitions are non-zero time transitions.
14This only impacts Always, Condition, Probability and Message triggers.



REPAST STATECHARTS GUIDE 21

Figure 24. Properties panel for a transition showing the On Transition
action block.

Figure 25. Properties panel for a transition showing the Guard condition block.

Next we present the different transition trigger types in more detail.



22 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 26. The properties panel for an always transition.

3.1. Always Trigger. Always triggers are always valid. The transition can, however,
contain a Guard condition which if false, would prevent the transition from triggering.
Because this trigger type results in zero time transitions, it is important to make sure that
there are no always trigger transitions contributing to zero time loops in any statechart
you create, since this has the potential to create never-ending loops. The properties panel
for an always trigger transition is in Figure 26. One use for always trigger transitions is as
self transitions to execute some action at a set polling time.



REPAST STATECHARTS GUIDE 23

Figure 27. The properties panel for a timed transition.

3.2. Timed Trigger. Timed triggers become valid after some time, measured in simula-
tion ticks. The properties panel for a timed trigger transition is shown in Figure 27. The
Time element in the properties panel accepts general Java, Groovy or ReLogo code return-
ing a numerical value, including simple numerical entries (e.g., 2 or agent.getDelay()),
with the same keywords as the On Transition action block (i.e., agent, transition,
params). If at the time a timed trigger is valid a Guard condition keeps the transition
from being valid, the transition does not get reinitialized and will simply remain invalid.



24 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 28. The properties panel for a probability transition.

3.3. Probability Trigger. Probability triggers are evaluated as valid with a specified
probability. The properties panel for a probability trigger transition is shown in Figure 28.
The Probability element in the properties panel accepts general Java, Groovy or ReL-
ogo code returning a numerical value, including simple numerical entries (e.g., 0.2 or
agent.getProbability()), with the same keywords as the On Transition action block
(i.e., agent, transition, params). The code block is evaluated each time the transition is
polled for validity.



REPAST STATECHARTS GUIDE 25

Figure 29. The properties panel for a condition transition.

3.4. Condition Trigger. Condition triggers are evaluated as valid based on a speci-
fied condition. The properties panel for a condition trigger transition is shown in Fig-
ure 29. The Condition element in the properties panel accepts general Java, Groovy or
ReLogo code returning a boolean value, including simple boolean entries (e.g., true or
agent.getCondition()), with the same keywords as the On Transition action block (i.e.,
agent, transition, params). The code block is evaluated each time the transition is polled
for validity.



26 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 30. The properties panel for a exponential decay rate transition.

3.5. Exponential Decay Rate Trigger. Exponential decay rate triggers become valid
after a random time following the exponential distribution. The properties panel for an ex-
ponential decay rate trigger transition is shown in Figure 30. The Exponential Decay Rate
element in the properties panel accepts general Java, Groovy or ReLogo code returning a
numerical value, including simple numerical entries (e.g., 2 or agent.getDecayRate()),
with the same keywords as the On Transition action block (i.e., agent, transition,
params). The code block is evaluated when the transition is initialized (i.e., when a state
is entered that has a possible exponential decay rate transition leading out of it). The code
block supplies the λ parameter to the exponential distribution specified by the probability
density function:

(1) f(t) = λe−λt

The expected value of an exponentially distributed random variable with parameter λ is
1/λ. So given, for example, a λ of 2, the expected value for the time it would take for an
exponential decay rate transition to trigger would be 0.5 in units of simulation ticks.



REPAST STATECHARTS GUIDE 27

Figure 31. The properties panel for a message message, with the available
trigger types shown under the Trigger element.

3.6. Message Trigger. Message triggers become valid when a message meeting specific
criteria is received by the statechart. A statechart is sent a message when the statechart’s
receiveMessage(Object) method is called. From an agent-based modeling perspective,
this would likely occur when an agent is sent a message and then the agent forwards the
message to all or a subset of its statecharts15. Messages from the queue are consumed by
message transitions in the order they were received. If there are message transitions to
check, the queue will be checked until a valid message is found.

There are four different types of message triggers, shown in the drop down menu of the
Trigger element in the message trigger properties pane in Figure 31, and we present them
next.

15There is nothing to prevent one agent from directly accessing another agent’s statechart if the statechart
is visible, but it could be considered not very good practice in an object oriented programming sense.



28 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 32. The properties panel for a When Message Meets a Condition
message trigger.

3.6.1. When Message Meets Condition. The When Message Meets a Condition message
trigger has the properties panel shown in Figure 32. The Message Class element is specifies
the type of the message, which can be any of the basic types in Figure 33 or the fully
qualified name of any another type16. To specify a type not in the list, enter the fully
qualified name of the type in the combo box. The Condition element in the properties
panel accepts general Java, Groovy or ReLogo code returning a boolean value, including
simple boolean entries (e.g., true or agent.getCondition()). The keywords available
within the Condition action block are:

agent: This is the agent that contains the statechart.
transition: This is the transition itself.
message: This is the message received by the statechart.
params: This is the model’s Parameters object.

The code block is evaluated each time the transition is polled for validity.

16The default Message Class is java.lang.Object which will accept any type of message.



REPAST STATECHARTS GUIDE 29

Figure 33. The basic types available for the Message Class element in the
properties panel for the When Message Meets a Condition, When Message
Equals, and When Message is of the Specified Class message triggers. Ad-
ditional types can be specified with their fully qualified names.



30 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 34. The properties panel for a When Message Equals message trigger.

3.6.2. When Message Equals. The When Message Equals message trigger has the proper-
ties panel shown in Figure 34. The only difference between this and the When Message
Meets a Condition message trigger is that instead of a Condition element there is an Equals
element that needs to be defined. The Equals element accepts general Java, Groovy or
ReLogo code returning any value that will be checked against the received message using
the message’s equals(Object) method. The keywords within the Equals block are the
same as the On Transition action block (i.e., agent, transition, params).

The When Message Equals trigger can be considered as a special case of the When
Message Meets a Condition trigger where, if the contents of an Equals element in a When
Message Equals trigger are denoted by <Equals Contents>, then the equivalent Condition
element in a When Message Meets a Condition trigger would be:

message.equals(<Equals Contents>);



REPAST STATECHARTS GUIDE 31

Figure 35. The properties panel for a When Message is of Class message trigger.

Figure 36. The properties panel for an Always message trigger.

3.6.3. When Message is of Class. The When Message is of Class message trigger has the
properties panel shown in Figure 35. Any message that is received that is of the specified
class type will result in the transition being triggered.

3.6.4. Always. The Always message trigger has the properties panel shown in Figure 36.
Any message that is received will result in the transition being triggered.



32 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 37. An error marker on a transition

4. Debugging Statecharts

When a statechart is saved the code for that statechart will be generated in the src-gen
directory in the statechart’s project. At that time the statechart will also be validated and
any structural warnings or errors will be displayed in the statechart workspace. Figure 37
is an example of this. The transition between State 0 and State 2 has an error. Moving
the mouse pointer over the error marker will display a tooltip with the error message. In
this case, the transition has a Condition trigger type but no condition has been specified in
the transition’s properties. The error message will also be displayed in Eclipse’s Problems
view.

If there is an error in the code generated by the statechart, you will see the error marker
on the state chart element that contains the error (the state or transition) and on the src-
gen folder in the statechart’s project. This kind of error will occur when any code specified
in the statechart’s state or transition properties (such as the On Exit, Condition and so
forth code blocks) is erroneous. To fix these kinds of errors, click on the element with the
error and examine its action block properties. The error should be flagged in the action
block editor as in Figure 38. The error itself is that the getHealt method is not defined
on the agent. This should be fixed directly in the code block.

In the rare case, the error is not flagged in the action block editor itself, then expand the
src-gen folder to find the offending file as in Figure 39. Open the file. The comments in the
file describe the statechart element that produced the bad code and eclipse will flag errors
in the code itself. Figure 40 shows such an error. As before, the error itself is that the
getHealt method is not defined on the agent. The comments in the code state that this is
the code for the “Condition trigger condition for Transition 3, from = State 0, to = State
2.” To fix this then, we need to edit the trigger condition code in Transition 3. To find



REPAST STATECHARTS GUIDE 33

Figure 38. An error in the transition condition block flagged by the editor.

Figure 39. An example of an error in the code generated from the statechart.

it, we can use the to and from states mentioned in the comments and select the transition
that connects them. Note that editing the code directly in the .java file will remove the
error, but will NOT fix the problem. The next time the statechart is saved, the code
will be regenerated. The code must be fixed in the statechart element that produced the
problem.



34 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 40. An error in the code produced by the statechart. Note that
the comments refer to the element that produced the code.



REPAST STATECHARTS GUIDE 35

5. Statecharts at Runtime

When a simulation is running, an agent’s statechart can be visually accessed via the
agent’s probe panel. An agent’s probe panel is launched by double clicking an agent in a
display within the Repast Simphony runtime GUI. Figure 41 shows the Repast Simphony
runtime GUI with a gridded display on the right and a probe panel on the bottom left
(larger red rectangle). The probe panel was launched by double-clicking the visible agent on
the right (blue filled circle). Within the probe panel, the button to display the Statechart
statechart is indicated with the smaller red rectangle (and the red arrow). When this
button is pressed, a statechart display is launched (Figure 42). The statechart display
highlights active states with a green color17. Under the statechart display Options menu
item there is a menu item (Always On Top) to always keep the statecharts display on top
of other displays. This is enabled by default but can be disabled.

In addition, statecharts can be directly manipulated via mouse clicks, thereby permit-
ting manual activation of inactive states and the forcing of transitions to be followed.
This feature allows for experimentation with alternative or rare event paths through agent
statecharts. Right click on a state to pop-up the menu to activate it, or right click on a
transition to pop-up the menu to follow it. Note that a transition must be active if it is to
be followed.

17As seen in Figure 42, a composite state is active if a sub-element is active (unless the sub-element is
a final state).



36 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 41. Repast Simphony runtime GUI with a probe panel showing
(large red rectangle) and with a statechart display button (smaller red rec-
tangle with arrow pointing to it).



REPAST STATECHARTS GUIDE 37

Figure 42. The runtime statechart display with State 2 and the Composite
State that contains it highlighted as active.



38 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

6. Putting it All Together

In this section we provide a few simple use cases for using statecharts in an agent model.

6.1. Scheduling Agent Behavior. Statecharts can make scheduling agent behaviors very
easy to do.

Use Case: An agent repeats certain activities for a while and then execute some other
action based on a condition, after which, the original activities are resumed.

Figure 43 shows a simple state configuration that can be used to achieve this. The Go
state has a self transition with an Always trigger and a polling time of 1 (see Figure 44) and
with the On Transition action block as shown in Figure 45. Thus the agent will execute
its doSomething() method at each simulation tick until told otherwise. We can define the
transition going out of the Go state to the branching state as a Timed transition, which will
allow the agent to repeat its behavior until a certain amount of time has passed, at which
point the statechart will proceed to Case 1 or Case 2 based on the condition checked by
the branching state’s outgoing transitions. This process can be repeated if the transitions
leading back to the Go state are followed.



REPAST STATECHARTS GUIDE 39

Figure 43. State configuration for simple behavior scheduling.

Figure 44. The trigger tab of the properties panel for the Go state’s self
transition (see Figure 43).



40 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 45. The On Transition action block for the Go state’s self transi-
tion (see Figure 43).



REPAST STATECHARTS GUIDE 41

Figure 46. A statechart showing an example of how to schedule weekly
and monthly activities.

Use Case: Agent behaviors need to be scheduled in a nested temporal structure.
This corresponds to, for example, weekly vs monthly activities. Figure 46 shows a simple

example of how you might define a statechart that does this. The general idea here is that
at the beginning of each month there are certain activities that need to be taken care of,
after which the weekly cycle begins. This can continue until the end of month is reached,
at which point any end of month activities can be executed. In this example, the month
composite state is then re-entered, resulting in the start of another month.



42 JONATHAN OZIK, NICK COLLIER - REPAST DEVELOPMENT TEAM

Figure 47. A statechart showing an example with “Low Alert” and “High
Alert” states. The example uses message based transitions to loosely couple
agent behaviors and the triggers for those behaviors.

6.2. Message Based Agent Behaviors. Message based triggers can make distributed,
context dependent behavior easy to implement.

Use Case: Agents need to react to changing conditions within a simulation.
Figure 47 shows a simple example where agents change from a “Low Alert” to a “High

Alert” state and vice versa. Each of the transitions are When Message Equals transitions
(see Figure 48). The messages can be broadcast to agents within a certain region of a
simulation or based on other criteria, but the important aspect of this example is the
dynamic and loose coupling that can be achieved by using message based transitions.



REPAST STATECHARTS GUIDE 43

Figure 48. The properties panel for the transition from the “Low Alert”
state to the “High Alert” state in the statechart from Figure 47. The
transition has a When Message Equals trigger that looks for messages of
type String with contents “High Alert”.


	0. Before We Get Started
	1. Getting Started with Statecharts
	1.1. Adding Statecharts
	1.2. Statecharts Editor

	2. States
	2.1. Entry State Marker
	2.2. Simple State
	2.3. Composite State
	2.4. Initial State Marker
	2.5. History State
	2.6. Final State
	2.7. Branching State

	3. Transitions
	3.1. Always Trigger
	3.2. Timed Trigger
	3.3. Probability Trigger
	3.4. Condition Trigger
	3.5. Exponential Decay Rate Trigger
	3.6. Message Trigger

	4. Debugging Statecharts
	5. Statecharts at Runtime
	6. Putting it All Together
	6.1. Scheduling Agent Behavior
	6.2. Message Based Agent Behaviors


