
REPAST SIMPHONY BATCH RUNS GETTING STARTED

NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

0. Before We Get Started

Before we can do anything with Repast Simphony, we need to make sure that we have
a proper installation of the latest version. See the Repast Requirements Web Page for
instructions on downloading and installing Repast Simphony and Java.1

1. Overview

A batch run in Repast Simphony consists of multiple individual model runs each using
their own combination of parameters. The user defines a parameter space and uses the
batch run capability to iterate through all the parameter combinations in that space. The
number of individual runs is equal to the number of parameter combinations. Repast
Simphony’s batch run functionality iterates through the parameter space combinations
and performs a run using each combination. These runs can be performed in parallel on
the local machine, on remote machines, in the cloud or on a combination of the three. In
addition runs can be done on a dedicated cluster. We will explore all of these options in
the following sections.

The actual runs themselves are executed via a master client type architecture. A master
process spawns child processes which perform the actual runs. The master process period-
ically polls these client processes to see if they have finished. Once they are finished the
master process gathers the output from each client process and concatenates it together
to form the total model output for all the runs. Each client works on its own subsection
of the total number of batch parameter combinations, performing individual runs for each
subsection. In this way, the individual runs are performed in parallel.

We will be using the JZombies demonstration model as an example. This a relatively
simple model involving zombie agents chasing human agents and human agents running
away from the zombies. The JZombies model can be imported together with the other
demonstration models by starting Repast Simphony and choosing File → Import Repast
Examples. If you click on the small downward facing triangle next to the Eclipse launcher
button (fig. 1), you’ll see the various available launchers. Click on “JZombies Demo Model”
to launch the demo model. You may have more entries than the single one shown in the
screenshot, in which case, just be sure to select JZombies Demo Model. Do not select
Zombies Demo Model.

1 https://repast.github.io/requirements.html

1

https://repast.github.io/requirements.html
https://repast.github.io/requirements.html

2 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Figure 1. JZombies Model Launcher

2. The Batch Run Configuration GUI

The Batch Run Configuration GUI is used to configure and launch the batch run. To
start the configuration GUI, start the JZombies demo model (see section 1) and click on the
lightning bolt in the toolbar (fig. 2). Note that you can also start the GUI as a stand-alone
application. See section 6.4 for the details.

Figure 2. Batch Run Configuration GUI Launch

The GUI is used to configure a batch run. This configuration can be saved and then
loaded at a future time. The configuration GUI consists of a tool bar and four tabbed

panels (fig. 3). The first four toolbar buttons are used to create a new
configuration, open an existing configuration, save the current configuration, and save the
current configuration in a new file. Hovering over the buttons with the mouse will show a

tooltip explaining the buttons function. The fifth button will reload the properties in
the model panel from the current model.

The remaining two buttons have to do with performing the batch runs itself. Regardless
of type of batch run (local, distributed, and so forth), the batch run requires enough of
Repast Simphony as well as the model to be run in order to work. These parts are bundled
into a “payload” archive file that is then run locally or transferred to another machine
depending on whether the runs are local or to be distributed among remote machines. The

REPAST SIMPHONY BATCH RUNS GETTING STARTED 3

Figure 3. Batch Run Configuration GUI

second to last button will create this payload archive file for the current configuration.

The last button will then execute the batch run.

2.1. Model Panel. When the batch configuration GUI is started and you have a model
loaded in the Repast Simphony runtime then the GUI will create a new configuration with
that model loaded. The model panel will contain various required model properties:

Model Project: The location of the project that contains the model.

4 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Scenario: The location of the scenario directory of the model.
Output Directory: The directory where the model batch run output will be written.

The browse button next to each of these items can be used to select the directory for

each property. The reload button will load best guess defaults for these properties when
the GUI is launched with an associated project.

By default the batch run mechanism will collect and concatenate any output files spec-
ified in the simphony model as File Sinks. If you do your own custom output that is not
defined in a File Sink, you can use the “Optional Output File Patterns” table to define how
to deal with such custom output. You provide a file pattern that can be used to identify
the different instances of the custom output and how to treat that output once it is found.
If the output is to be aggregated it will be concatenated and copied to the master machine.
If its not aggregated, the output will still be copied to the master machine so you do not
need to grab the files individually.

The fields in the table are defined as follows:

Pattern: The pattern specifies where the custom output is located. Unix “glob” style
wildcards can be used, such as the *. For example, a pattern of “output/MyCusto-
mOutput*.csv” means any files that begin with “MyCustomOutput” and end with
“.csv” in an “output” directory will be collected as output and transferred back to
the master machine.

Local Path: A directory into which the custom model output will be copied. This
directory will be created beneath the Output Directory mentioned above.

Aggregate: If this is checked then the files that match the pattern specified in the
Pattern field will be aggregated together into a single file.

Has Header: If this is checked then the first line in any files that match the pattern
specified in the Pattern field will be treated as a Header and will not be aggregated
as part of the data.

Specifying output patterns is optional, and only necessary if you do not generate file
output using the default File Sink mechanism.

The Run Properties sections defines properties that are used during the actual model
run.

SSH Key Directory: The directory that contains the user’s public ssh rsa key. See
the distributed runs section (section 2.3.2) below for more details.

VM Arguments: The virtual machine arguments to use when performing the actual
model runs.

Poll Frequency: The frequency with which the master process will poll its clients
to determine if they have finished.

The VM arguments should be space separated and quoted if the argument itself contains
a space.

2.2. Batch Parameters Panel. The batch parameters panel (fig. 4) is used to define the
parameter space that the batch run will iterate over.
It has two file properties.

REPAST SIMPHONY BATCH RUNS GETTING STARTED 5

Figure 4. Batch Parameters Panel

Parameter File: The location of the non-batch parameter file for the model. This
is typically the parameters.xml file in the scenario directory.

Batch Parameter File: The location of the batch parameter file. By default, this
will be the batch params.xml file the model’s batch directory.

The GUI will use the parameters file to generate some sample batch parameters if the
batch parameters file is empty. The parameters file is also used during the actual runs
and thus the parameters in the non-batch parameters file must match those in the batch
parameters file. Beneath the batch parameter file text box, you will see the actual pa-
rameters themselves. If the batch parameter file is empty, then the GUI will display the
parameters in the parameter file as constant values. The drop down combo box underneath
each parameter name can be used to define the value or range of values for that parameter
during a batch run. The possible parameter types are:

Constant: The parameter will be set to the specified value in the “value” box and
this value will remain constant over all the batch runs.

6 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Number Range: The parameter will begin at the value specified in the “From”
text box and be incremented by the “Step” amount up to and including the “To”
amount.

Space Separated List: The parameter will be set to each individual value in the
“Values” list. The values should be space separated.

Random: Sets the value at random. This only applies to the Random Seed which
will then be initialized with the current time.

The full combination of the parameters defines the parameter space. The batch runs
will iterate over the entire space. For example, if the Random Seed is set to a constant of
1, the Human Count to a Number Range where From: 1, To: 3, Step: 1 and the Zombie
Count is set to a Space Separated List of “20 15”, then the parameters for each run will
be:

(1) : Random Seed: 1, Human Count: 1, Zombie Count: 20
(2) : Random Seed: 1, Human Count: 2, Zombie Count: 20
(3) : Random Seed: 1, Human Count: 3, Zombie Count: 20
(4) : Random Seed: 1, Human Count: 1, Zombie Count: 15
(5) : Random Seed: 1, Human Count: 2, Zombie Count: 15
(6) : Random Seed: 1, Human Count: 3, Zombie Count: 15

Note that order of the runs with respect to the parameters may actually differ, but all
the parameter combinations will be executed.

When the batch parameters as recorded in the batch parameter do not match the ones
specified in the GUI, then the batch parameter file will be displayed in red. (This will occur
when a parameter type or value is changed.) The red indicates that the batch parameter
file needs to be re-generated using the “Generate” button in the lower right of the panel.

2.3. Hosts Panel. The Hosts panel (fig. 5) is used to define the machines on which the
batch runs will be performed. Both local and remote hosts can be defined. The left hand
side of the panel lists the hosts that been previously defined (e.g. “nick@localhost”) and
the right hand side “Host Properties” displays the properties for the host selected on the

left hand side. New hosts can be created using the “Add Host” button. A copy of

an existing host can be made with the “Copy Host” button. Existing hosts can be

deleted by selecting the host to delete and pressing the “Delete Host” button.
The Host Properties are:

Type: The type of host: local or remote.
User: The user name of the account on the remote machine. This is only used for a

remote host.
Host: The name or ip address of the remote machine. This is only used for a remote

host.
SSH Key File: The name of the private SSH key file used to auto-login on the

remote host. This is only used for a remote host.

REPAST SIMPHONY BATCH RUNS GETTING STARTED 7

Figure 5. Hosts Panel

Instances: The number of instances to run on the host. Each instance will be as-
signed a chunk of the parameter space to run.

Each of the hosts defined on the host panel will be used to perform the batch runs.
For example, if one local host and one remote host is defined and the local host has two
instances and the remote host has a single instance, then the batch parameter space will
be divided in thirds. Two-thirds will be run locally in parallel: each instance on the local
machine will run a third of the space. The remaining third will be run on the remote
machine. The number of instances to run on a machine should be roughly the number of
hardware threads available on the machine. Of course, your milage may vary, especially if
the machine is performing other computationally expensive tasks.

2.3.1. Local Runs. Local runs are the easiest runs to perform, requiring the least amount of
external setup. To configure a local run, create a host (or chose an existing one) and set its
type to LOCAL. You will see the host labeled as something like X@localhost where X is the
user name of the account running the GUI. When you perform a local run, the GUI copies
the archive payload mentioned above to a temporary location on the machine’s hard-drive.
This payload is unzipped and the parameter space is divided among the instances to be
run locally and the runs are begun. Once the runs have ended, the output generated by

8 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

each instance is concatenated together and placed in the output directory specified in the
model panel.

Note that if the only Java version you have installed on your machine is that in-
cluded with Repast Simphony, then the runs may fail because a Java runtime cannot
be found. If that is the case Java 8 and Java 11 JDKs can be downloaed from from
Adopt Open JDK. Select either OpenJDK 8 with Hotspot or OpenJDK 11 with Hotspot.
See https://stackoverflow.com/questions/52511778/how-to-install-openjdk-11-on-windows
for help on installing under Windows and untar into /Library/Java/JavaVirtualMachines
on macOS.

2.3.2. Remote Runs. Remote runs are more complicated and you may have to do some
setup on the local and remote machine. Remote machines can be anything from miscel-
laneous spare machines that you might have up to amazon’s cloud computing services.
Remote runs work over Secure Shell (SSH). SSH is a cryptographic network protocol for
secure data communication, remote shell services or command execution and other secure
network services between two networked computers that connect, via a secure channel over
an insecure network, a server and a client (running SSH server and SSH client programs,
respectively). Any machine that allows you to connect to it via SSH and can run a java
virtual machine can be used to perform a remote run. See section 6 on how to set up the
remote machines.

On the local side, that is, on the machine you are running the batch configuration
GUI on, you will need to be setup to auto-login to the remote machine using public key
authentication. This consists of creating a ssh public / private key pair on your machine,
if those don’t already exist, copying that key to the remote machine and then appending
the key to the list of authorized keys on the remote machine. Some useful references that
describe this are:

• OSX - http://smbjorklund.no/ssh-login-without-password-using-os-x
• Windows - See below.
• Linux - https://hkn.eecs.berkeley.edu/∼dhsu/ssh public key howto.html

Other sites exist as well, google “ssh public key authentication” for more information.
Currently, the new OpenSSH format is not supported (OpenSSH 7.8 and newer). En-

sure the key you are using starts with -----BEGIN RSA PRIVATE KEY----- rather than
-----BEGIN OPENSSH PRIVATE KEY-----.

The situation on windows is more complicated. OSX and Linux come with ssh and thus
the built-in ability to generate public / private key pairs. Unfortunately, this is not the
case for Windows and thus some setup is required. The following steps describe one way
to generate the key pair and copy it to the remote machine under Windows.

(1) Download and install the Git Client from http://git-scm.com/download/win.
(2) From the start menu, run “Git Bash”. You may need to navigate to the Git

folder in ”All Programs”. Git Bash is terminal program in which you can type the
commands to create the key pairs.

https://adoptopenjdk.net
https://stackoverflow.com/questions/52511778/how-to-install-openjdk-11-on-windows
http://smbjorklund.no/ssh-login-without-password-using-os-x
https://hkn.eecs.berkeley.edu/~dhsu/ssh_public_key_howto.html
http://git-scm.com/download/win

REPAST SIMPHONY BATCH RUNS GETTING STARTED 9

(3) Check if you have a key pair already generated. If the files id rsa and id rsa.pub
exist in an .ssh directory in your home directory (e.g. C:\Users\nick\.ssh) then the
keys already exist and you can skip to step 5.

(4) In the Git Bash terminal type ssh-keygen -m PEM -C "your-email@example.com".
We want the default settings so when asked to enter a file in which to save the key
just press enter.2 Do not specify a passphrase. You should see see something like
figure 6

(5) In the Git Bash terminal type scp ~/.ssh/id rsa.pub user@machine:~ where
user is the user name used to login to the remote machine and machine is the
machine name or ip address. This will copy the public key into the home directory
on the remote machine.

(6) Login to the remote machine. Type ssh user@machine replacing user and machine
as appropriate. You will be asked for the password to login to the remote machine.

(7) Type cat id rsa.pub >> .ssh/authorized keys to add the public key to the
list of authorized keys on the remote machine. If you get a “no such file or di-
rectory” message, type mkdir .ssh; touch .ssh/authorized keys and then cat

id rsa.pub >> .ssh/authorized keys . If you get an error that .ssh already ex-
ists when trying to create the directory with mkdir, type touch .ssh/authorized keys

and then cat id rsa.pub >> .ssh/authorized keys .
(8) Type exit to logout from the remote machine.
(9) Try to login to the remote machine again by typing ssh user@machine replacing

user and machine. If you are NOT asked for your password but are asked for your
ssh private key passphrase then the setup was successful.

Figure 6. Key Generation with Git Bash

Once you’ve got your keys on the remote machine, you can run remote batch runs using
the Batch Run GUI. The host properties User, Host and SSH Key are used to login to the
remote host. The User property should be the user name for the ssh login. The host is the

2Do specify a different name of the newly generated SSH key if you currently have one installed, as the
default settings with overwrite /.ssh/id rsa and /.ssh/id rsa

10 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

name or ip address of the machine to login into and the SSH Key File is the private key
file on the local machine used to auto-login to the remote machine. This file is typically
called id rsa in a .ssh directory in the user’s home directory, but it may be different.

When performing a batch run using a remote host, the active payload will be copied
to the account of the user specified in the host properties. After that, the run occurs as
it does in the local version. The archive is unzipped and the parameter space is divided
among the instances to be run on that remote host. When the instance runs have ended the
output is copied back to the machine where the GUI was run, concatenated and written to
the output directory. Note that the remote model runs will be performed using whatever
Java runtime is the default on the remote machine. If you receive class format or other
errors that indicate a Java runtime incompatibility, make sure that that the remote Java is
compatible with the Java version with which you have compiled your code. Typically, code
compiled with a later version of Java is not compatible with a previous version’s runtime.

3. Preparing Your Model for Batch Runs

There are three requirements for a model to be successfully run in batch mode.
The first requirement is that your model must terminate each run. When running the

model via the GUI this is typically done by clicking the stop button. In the batch run
case, you must set and check some termination condition and then stop the model if that
condition is met. Or, set the model to terminate at some specific tick. In the JZombies
case, the first of these might look like:

if (context.getObjects(Human.class).size() == 0) {

RunEnvironment.getInstance().endRun();

}

This checks to see if there are any more Humans and if not then it calls RunEnvironment
to end the run. Context here is the model’s master context. Something like this could
be scheduled to execute once every tick either manually or via a scheduled method on the
context builder.

The second option looks like:

RunEnvironment.getInstance().endAt(30);

This schedules the simulation to end at tick 30. It can be placed in the ContextBuilder for
your model.

The second requirement concerns the model’s file output. The batch mechanism assumes
that the output will be written somewhere in the “instance” directory where the model
runs. The best way to insure that this occurs is to specify the file with only the file name
or a relative directory path followed by the file name. Make sure that the path or file
name does not begin with a “/” (under OSX, Linux) or “X:\” or “\” (under windows
where X is any drive letter). The name itself can be anything. Figure 7 is an example
of an acceptable file. Output created via the Simphony’s File Sinks will be automatically
collected and aggregated. If you have created custom output, then you need to use the
Output File Patterns GUI in the Batch Run Configuration GUI’s model tab to specify
where to find and how to treat that output.

REPAST SIMPHONY BATCH RUNS GETTING STARTED 11

The third requirement is the exclusive use of the data and lib project directories for
model data and additional model libraries, respectively. The contents of these folders will
be included in the “payload” archive file. Any data that is needed by the model will
need to be referenced through the project’s data folder, e.g., "./data/input.csv". Any
additional jar files required by the model that are in the lib directory will automatically
be made available for the model at runtime.

Figure 7. Relative Path in File Sink Editor

4. Batch Run Model Output

As mentioned above the output from each instance will be concatenated and copied into
the output directory specified in the GUI. The file sink output will look the same as a
normal non-batch run except that the run numbers will likely not be in numeric order
given that the concatenation makes no account for order. For example, the output from
run 11 may appear before that from run 2.

"run","tick","Human Count","Zombie Count"

1,0.0,200,5

1,1.0,200,5

...

11,0.0,220,15

12 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

11,1.0,220,15

11,2.0,209,26

...

2, 0.0, 12, 200

...

For each file sink output there will be a batch param map text file that specifies the
batch parameters that were used to initialize that run. For example,

"run","randomSeed","human_count","zombie_count"

1,1,200,5

11,1,220,15

2,1,250,5

Here run 1 was initialized with a random seed of 1, a human count of 200 and zombie
count of 5. Run 11 was initialized with a random seed of 1 a human count of 220 and
zombie count of 15.

You will also see a status output.properties file in the output directory. This reports the
final status of each local and remote instance. For example,

ec2-107-20-23-221.compute-1.amazonaws.com.ubuntu.1 = OK

ec2-107-20-23-221.compute-1.amazonaws.com.ubuntu.2 = OK

localhost.nick.1 = OK

The format here is “hostname.username.instance number = status”. In this case, we ran
two instances on an amazon cloud machine with the name of ec2-107-20-23-221.compute-
1.amazonaws.com under the ubuntu user. Both those finished successfully. We also ran
one instance on the localhost under the nick user. That finished successfully as well. When
the runs don’t finish successfully you will see status other than “OK”, such as “FAIL”.
There will also be additional log files in the output directory containing some details on
the failure.

5. An Example

This section will walk you through an example batch run using a combination of local
and remote machines. We will run 1 instance locally, 2 instances on a remote OSX machine
and 1 instance on an Amazon EC2 cloud instance. We have set up the remote OSX machine
and the Amazon cloud host using the instructions in section 6. The JZombies demo will
be our example model.

We’ve set up the Model, Batch Parameters and Hosts Panel as in fig. 8, fig. 9 and fig. 10
respectively. Note that the IP address of the OSX machine as been obscured. If you want
to follow along with the example, fill the Run Properties part of the Model panel as in
the figure and set the batch parameters in the Batch Parameters panel to match the batch
panel figure. For the hosts, create only a local host with two instances. To do that, go
to the hosts panel, if there is an existing localhost entry, click on it and make sure the

instances entry is 2. If there is no localhost entry, click the “Add Host” button and set
its type to LOCAL and instances to 2.

REPAST SIMPHONY BATCH RUNS GETTING STARTED 13

Figure 8. Model Panel For Run

Once the various configuration properties have been set, we can click the run button.
This will create the archive payload and start the runs. The Console panel will display
information about the archive creation and then about the runs themselves. If you have a
passphrase associated with your SSH key and you are doing remote runs you will be asked
for your passphrase in the passphrase dialog (fig. 11).

The Console output reports the status of the batch run from setup through the actual
runs. It can look daunting at first but it contains lots of useful information. Much of
the output begins with a status keyword such as INFO, WARN or ERROR. If the run
completes without any issues you should see only INFO type status messages. Following
the status keyword is a timestamp followed by the name of the Java class that is producing
the status message. After that, you will see the status message itself.

The first status message tells us that a “config.props” file has been written to the output
directory. The config.props file contains all the batch run properties that were entered into
the GUI. The code that performs the batch runs reads this config file and performs the runs

14 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Figure 9. Batch Panel For Run

using that information. (In what follows, the file paths have been shortened for formatting
purposes. You will see the full file path).

INFO [AWT-EventQueue-0] 16:55:18,582

repast.simphony.batch.gui.BatchConfigMediator - Writing batch

run config file to: JZombies_Demo/output/config.props

The second status message says that the batch params.xml file that was created via
the GUI is “unrolled” and written to a temporary directory. “Unrolling” here refers to
explicitly producing and writing each individual parameter combination to a file. It is this
unrolled parameter file that is divided and distributed to the hosts for running.

INFO [AWT-EventQueue-0] 16:55:18,588

repast.simphony.batch.gui.BatchConfigMediator -

Unrolling batch parameter file: JZombies_Demo/batch/batch_params.xml to

/var/folders/31/yd0l22kx35zgy1wbnc8p7gbr0000gr/T/unrolledParamFile.txt

The next section is the output of the Ant script (see http://ant.apache.org) that creates
the archive payload. Here we can see the creation of a working directory underneath a
temporary directory. This working directory will contain the model itself and the Repast
Simphony code necessary to run the model. The [copy] and [jar] sections report model
code and files being copied into the working directory and the creation of jar archives

http://ant.apache.org

REPAST SIMPHONY BATCH RUNS GETTING STARTED 15

Figure 10. Hosts Panel For Run

containing the necessary repast code. (I’ve replaced part of the temporary path with “...”
and truncated the jar section a bit to improve the readability here.)

make_zip:

[delete] Deleting directory /private/var/folders/.../working

[mkdir] Created dir: /private/var/folders/.../working

[mkdir] Created dir: /private/var/folders/.../working/bin

[mkdir] Created dir: /private/var/folders/.../working/scenario.rs

[copy] Copying 2 files to /private/var/folders/.../working

[copy] Copying 3 resources to /private/var/folders/.../working

[copy] Copying 1 resource to /private/var/folders/.../working/bin

make_pre_reqs:

[mkdir] Created dir: /private/var/folders/.../working/data

[mkdir] Created dir: /private/var/folders/.../working/lib

...

[jar] Building jar: /private/var/folders/.../working/lib/repast.simphony.batch.jar

[jar] Building jar: /private/var/folders/.../working/lib/repast.simphony.statecharts.jar

[copy] Copying 69 files to /private/var/folders/.../working/lib

[jar] Building jar: /private/var/folders/.../working/lib/model.jar

[copy] Copying 10 files to /private/var/folders/.../working/scenario.rs

[move] Moving 1 file to /private/var/folders/.../working/scenario.rs

16 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

[jar] Building jar: JZombies_Demo/output/complete_model.jar

[echo] Completed building model archive.

The archive payload is then copied to the local and remote hosts. The process here
is that a zip archive is created containing the archive payload as well as some additional
configuration data. This zip archive is named with the user name followed by the host
together with a timestamp (e.g. nick localhost4106394375716993975.zip). In the case of a
local host, the zip archive is copied to a local temporary directory whose name begins with
simphony model followed by a timestamp (e.g. simphony model 1368219324898).

INFO [SwingWorker-pool-1-thread-2] 16:56:26,990

repast.simphony.batch.ssh.LocalSession -

Copying locally /var/folders/.../nick_localhost4106394375716993975.zip

to /var/folders/.../simphony_model_1368219324898

INFO [SwingWorker-pool-1-thread-2] 16:56:27,411

repast.simphony.batch.ssh.LocalSession - Copying Finished.

The remote host works similarly. The zip archive is copied to a simphony model plus
timestamp directory on the remote host. In this case, the zip archive is named ubuntu ec2-
107-20-23-221.compute-1.amazonaws.com8807870753490178805.zip and the remote direc-
tory is /simphony model 1368219324898/.

INFO [SwingWorker-pool-1-thread-2] 16:56:09,829

repast.simphony.batch.ssh.RemoteSession -

Copying /var/folders/.../

ubuntu_ec2-107-20-23-221.compute-1.amazonaws.com8807870753490178805.zip to

ubuntu@ec2-107-20-23-221.compute-1.amazonaws.com:~/simphony_model_1368219324898/

ubuntu_ec2-107-20-23-221.compute-1.amazonaws.com8807870753490178805.zip ...

INFO [SwingWorker-pool-1-thread-2] 16:56:23,197

repast.simphony.batch.ssh.RemoteSession - Copying Finished.

Before a remote run is attempted, a check is made to see if Java is installed on the
remote host. If it is not, then you will see an error. In this case, we can see that the java
version is 1.8.0 232.

INFO [SwingWorker-pool-1-thread-2] 16:56:33,369

repast.simphony.batch.ssh.RemoteSession -

Checking for java on ubuntu@ec2-107-20-23-221.compute-1.amazonaws.com

INFO [Connect thread ec2-107-20-23-221.compute-1.amazonaws.com session] 16:56:33,691

repast.simphony.batch.ssh.SSHSession - java version "1.8.0_232"

INFO [Connect thread ec2-107-20-23-221.compute-1.amazonaws.com session] 16:56:33,692

repast.simphony.batch.ssh.SSHSession - OpenJDK Runtime Environment (IcedTea 2.3.9)

(1.8.0u232-2.3.9-0ubuntu0.11.10.1)

INFO [Connect thread ec2-107-20-23-221.compute-1.amazonaws.com session] 16:56:33,692

repast.simphony.batch.ssh.SSHSession -

OpenJDK 64-Bit Server VM (build 23.7-b01, mixed mode)

REPAST SIMPHONY BATCH RUNS GETTING STARTED 17

Once the java version has been checked and assuming it is OK, then the archive payload
is unzipped and run.

INFO [SwingWorker-pool-1-thread-2] 16:56:38,685

repast.simphony.batch.ssh.LocalSession - Unzipping model

/var/folders/.../simphony_model_1368219324898/nick_localhost4106394375716993975.zip

INFO [SwingWorker-pool-1-thread-2] 16:56:39,177

repast.simphony.batch.ssh.LocalSession - Running model on localhost ...

INFO [SwingWorker-pool-1-thread-2] 16:56:34,583

repast.simphony.batch.ssh.RemoteSession - Unzipping model on

ubuntu@ec2-107-20-23-221.compute-1.amazonaws.com

INFO [SwingWorker-pool-1-thread-2] 16:56:37,633

repast.simphony.batch.ssh.RemoteSession - Running model on

ubuntu@ec2-107-20-23-221.compute-1.amazonaws.com ...

The remote and local hosts are then periodically polled to see if they have finished. The
polling status updates end with “DONE:” followed by a “yes” if the runs on that host have
finished. Otherwise “no” will be output.

INFO [pool-3-thread-3] 16:56:51,210 repast.simphony.batch.ssh.LocalDonePoller -

Polled /var/folders/.../simphony_model_1368219324898 for DONE: yes

INFO [pool-3-thread-2] 16:56:52,540 repast.simphony.batch.ssh.RemoteDonePoller -

Polled simphony_model_1368219324898 on ec2-107-20-23-221.compute-1.amazonaws.com

for DONE: yes

INFO [pool-3-thread-1] 16:56:52,796 repast.simphony.batch.ssh.RemoteDonePoller -

Polled simphony_model_1368219324898 on XXX.XXX.XXX.XXX

for DONE: yes

If there was error during the run, that should be reported here as part of the polling.
Assuming there wasn’t then the local and remote output is copied and concatenated into
the output directory that was specified in the GUI.

INFO [SwingWorker-pool-1-thread-2] 16:56:55,630

repast.simphony.batch.ssh.RemoteSession - Finding and copying remote

output from sshtesting@XXX.XXX.XXX.XXX:simphony_model_1368219324898

to /var/folders/.../sshtesting_XXX.XXX.XXX.XXX

INFO [SwingWorker-pool-1-thread-2] 16:56:58,412

repast.simphony.batch.ssh.RemoteSession - Finding and copying remote

output from ubuntu@ec2-107-20-23-221.compute-1.amazonaws.com:

simphony_model_1368219324898 to /var/folders/.../

ubuntu_ec2-107-20-23-221.compute-1.amazonaws.com

INFO [SwingWorker-pool-1-thread-2] 16:57:00,247

repast.simphony.batch.ssh.LocalSession - Finding output on localhost in

/var/folders/.../simphony_model_1368219324898

INFO [SwingWorker-pool-1-thread-2] 16:57:00,266

repast.simphony.batch.ssh.SessionsDriver - Aggregating output into

18 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

JZombies_Demo/output

INFO [SwingWorker-pool-1-thread-2] 16:57:00,267

repast.simphony.batch.ssh.SessionsDriver - Finished. Elapsed Time: 1.5906

If the Java version (local or remote) is greater than 11, you may see errors like:

INFO [Thread-1] 16:57:38,496 repast.simphony.batch.ssh.LocalSession -

ERROR [main] 16:57:38,494 repast.simphony.batch.InstanceRunner -

Error while running model

INFO [Thread-1] 16:57:38,496 repast.simphony.batch.ssh.LocalSession -

repast.simphony.scenario.ScenarioLoadException: Unable to make protected

final java.lang.Class java.lang.ClassLoader.defineClass(java.lang.String,byte[],

int,int,java.security.ProtectionDomain) throws java.lang.ClassFormatError

accessible: module java.base does not "opens java.lang" to unnamed

module @324e4822

If possible, we recommend using Java/JRE 11 for the batch run Java. However, these er-
rors can be fixed by using the --add-opens VM argument.
The format is --add-opens <module>/<package>=ALL-UNNAMED. For example, if the error
specifies module java.base does not "opens java.util to unnamed module @371ef662,
then the module is java.base and the package is java.util, and the VM argument is
--add-opens java.base/java.util=ALL-UNNAMED.

The --add-opens arguments can be added to the VM arguments text box in the model
panel (2.1). The should be separated by spaces.

There are likely to be more than one of these arguments required. For example, the
JZombies demo needs:

--add-opens java.base/java.lang=ALL-UNNAMED

--add-opens java.base/java.util=ALL-UNNAMED

--add-opens java.base/java.lang.reflect=ALL-UNNAMED

--add-opens java.base/java.text=ALL-UNNAMED

--add-opens java.desktop/java.awt.font=ALL-UNNAMED

Figure 11. Passphrase Dialog

REPAST SIMPHONY BATCH RUNS GETTING STARTED 19

6. Remote Machine Setup

In order to perform a run on a remote machine that machine must be set up to accept
an ssh connection and you must have an account on the remote machine. Once the remote
machine has been setup for ssh logins, you then need to add your public key to its autho-
rized keys file as described in section 2.3.2. The remote machine must have at least Java
8 installed and it must be be the default Java on that machine.

6.1. OSX. Allowing remote logins on OSX is done using the System Preferences on the
machine you want to remotely login to. Start System Preferences and double click on the
sharing icon. Select the Remote Login as seen in figure 12. Make sure you allow access for
the user you will be logging in as. You should now be able to ssh into the remote machine
and copy your public keys to the server as described in links given in section 2.3.2.

Figure 12. Enabling SSHD on OSX

6.2. Linux / Unix. Chances are if the remote machine is running Linux or another Unix
variant it is already set up to allow ssh logins. If not, follow your distributions instructions
for turning on the sshd service. You should now be able to ssh into the remote machine
and copy your public keys to the server as described in section 2.3.2.

20 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

6.3. Windows. Windows does not come with a SSH server and so one must be provided.
As a solution to this, we’ve provided a Virtual Box virtual machine running a linux dis-
tribution. You can run this on your windows machine and the remote batch runs will be
performed on that. (Again, this is only required to use a windows machine as a remote
machine not to do local runs on a windows machine.)

(1) Download and Install Virtual Box from https://www.virtualbox.org/wiki/Downloads.
(2) Download Repast Simphony virtual machine file (Repast VM Ubuntu 12.0.4.ova)

from http://sourceforge.net/projects/repast/files/Repast
Simphony/Repast Simphony 2.1/Repast VM Ubuntu 12.0.4.ova/download

(3) Double Click on the downloaded virtual machine. Virtual Box should start with
the Import Virtual Appliance Dialog up (fig. 13).

(4) Click the Import button to import the virtual machine.

Figure 13. Import the Repast Simphony Server Virtual Machine

To run the virtual machine so that it can be used do the batch runs:

(1) Start Virtual Box

https://www.virtualbox.org/wiki/Downloads
http://sourceforge.net/projects/repast/files/Repast%20Simphony/Repast%20Simphony%202.1/Repast_VM_Ubuntu_12.0.4.ova/download
http://sourceforge.net/projects/repast/files/Repast%20Simphony/Repast%20Simphony%202.1/Repast_VM_Ubuntu_12.0.4.ova/download

REPAST SIMPHONY BATCH RUNS GETTING STARTED 21

(2) Start the virtual machine. You should see it on the left hand side named Repast
Simphony VM Ubuntu 12.0.4. (fig 14). Double click it. While the virtual machine
is starting you will see some Virtual Box Information messages.

(3) If you see an error message about network settings, click the “Change Network
Settings” button (fig. 15) and then the OK button in the settings dialog that pops
up.

(4) The virtual machine will then run through its boot process (this may take a minute
or two the first time) and eventually you will be presented with a command prompt
(fig. 16). (The virtual machine is configured as a server without a GUI.)

Figure 14. Repast Simphony Server Virtual Machine

Figure 15. Network Error Dialog

At this point, the virtual machine is almost ready to do the batch runs. You still need
to (1) get the IP address of the virtual machine in order to connect to it, and (2) you need
to copy your public key over to it. To find the IP address:

22 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Figure 16. VM Login

(1) Boot the virtual machine, if you haven’t already.
(2) Login to the virtual machine using a username of simphony and a password of

simphony.
(3) Once logged in, you should see a welcome message that includes the ip address.

It should say something like: IP Address for eth0: XXX.XXX.XXX.XXX where
the Xs are replaced with your IP address (fig. 17). Note that eth0 might also be
different. You can also get the IP address by running the ifconfig command. You
will see the details of all the installed network interfaces. These include an “inet
addr” entry that specifies the ip address.

Figure 17. IP Address

Once you have the IP address you can use that as the Host for batch runs. The user will
again be simphony. Lastly, you will still have to perform the one time copy of your public
key to this machine as described in the Remote Runs section (section 2.3.2). Once that
has been accomplished, the machine is ready. Note that you do not need to log directly
into it, it only needs to be running. The default password is simphony. If you want to
change it, you can use the passwd command.

To shut down the virtual machine when you no longer need it, you can close the window
as normal. This should pop up a Close Virtual Machine Dialog. Make sure the Send the
shutdown signal is selected and then click OK.

REPAST SIMPHONY BATCH RUNS GETTING STARTED 23

6.4. Amazon Cloud Services. Amazon Elastic Compute Cloud (Amazon EC2) is a
web service that provides resizable compute capacity in the cloud. It is designed to
make web-scale computing easier for developers. It is possible to use this remote com-
pute capacity to perform remote batch runs. More on Amazon’s EC2 can be found at
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html.

Amazon EC2 based batch runs begin with setting up a remote machine instance that runs
an Amazon Machine Image (AMI). The batch run will login into this instance using SSH
and perform the runs on it. The setup only needs to be done once. After that, the instance
can be stopped and started as needed. The Amazon EC2 Getting Started docs describe this
process: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2 GetStarted.html.
(Note that Amazon, at the time of writing, has 12 month free tier. See the links in the EC2
Getting Started Guide for more info.) Follow the Getting Started Guide to set up your
instance. Choose the 64 bit Ubuntu Server 18.04 LTS (HVM) (figure 18) as the Amazon
Machine Image (AMI) when creating an instance.

Figure 18. Select the Ubuntu Server 18.04 LTS AMI

Once your instance is running, log into and explore the instance using SSH as described
in Step 2 of the Amazon Getting Started Guide. You will need to install Java on the
instance. From the command line that you should see after you’ve logged in, run the
following commands (type them in and press enter after each one):

sudo apt -get update

sudo apt -get install openjdk -11-jre -headless

sudo apt -get install zip

After each command, you may get a question about whether to continue with the install.
Accept the default ’Yes’ by pressing the enter key. Once you’ve done this, your instance
should be ready to perform a batch run. The username to log in with is ubuntu as is the
password. To see the address of your instance, click on the instance in your EC2 Instances
console. The host address for your batch configuration should appear in the instance details
below it (figure 19). Make sure to stop your instance when you are done using it. When
you restart the instance the next time, the address will have changed so be sure to update
your batch configuration properties.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

24 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

Amazon EC2 has its own public key authentication setup that is described in its Getting
Started document. Consequently, the procedures described in section 2.3.2 are not required
here.

Figure 19. Instance Address

7. Launching the Batch Run Configuration GUI

Batch Run Configuration GUI can be launched in 3 different ways.

(1) Using the Launch Button found in the runtime
(2) Using the Eclipse Launcher in your project’s launchers folder
(3) Using the stand alone Batch Run applications

We have covered the first of these in section 2. The remaining two allow you to launch the
configuration GUI and thus batch runs without launching the repast runtime.

7.1. Launching from Eclipse. To launch the batch GUI from the eclipse launcher, open
the launchers folder in your model’s eclipse project and right click on the launch file that
begins with “Batch” (fig 20). Select “Run As” from the pop up menu and then the Batch
model entry. This will launch the batch GUI and load the selected model into it. Note that
when running via the launcher some of the output that would normally be in the Batch
Run GUI Console will show up in Eclipse’s console.

7.2. Launching as a Standalone Application. To launch the batch GUI as a stand
alone application navigate to where Repast Simphony is installed. Double click the batch runner.jar.

REPAST SIMPHONY BATCH RUNS GETTING STARTED 25

Figure 20. Eclipse Launcher for Batch Run GUI

8. Running on a Cluster or HPC Machine

It is also possible to perform batch runs on a cluster or a high performance computing
(HPC) type machine. Such machine are composed of many processors each of which can run
one or more batch run instances and all of which have access to a shared file system. Cluster
/ HPC runs will use the payload archive produced by the GUI but are not themselves run
via the GUI. These batch runs will use the job submission paradigm that is standard on
these types of machines.

The first step for running a model on an HPC machine is to copy the payload com-
plete model.jar to the remote machine. The payload is located in the model’s output
directory and can be created using the Batch Configuration GUI with the create archive

button (). The transfer is often done via scp or similar secure copy methods. After
copying the payload to the desired location, the next step is to unzip the payload:

unzip complete_model.jar

Simphony includes submission files for two common job schedulers, PBS and Slurm. If
your system uses a different scheduler, it should be possible to adapt instructions below.

8.1. PBS. We begin with the Portable Batch System (PBS) job scheduler. The first file
to look at is the repast.pbs file. This is the file that is submitted to the PBS scheduler.
It calls repastwrapper.sh to launch each instance and perform the actual runs. The top
section of the file looks like:

#!/bin/bash

#PBS -N <Job_Name>

#PBS -q <Queue_Name>

#PBS -l nodes=<nodes>:ppn=<ppn>

#PBS -m e

26 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

where the elements in the angled brackets are meant to be edited for each individual use
case. So, for example, if we wanted to name the job “Zombies Test”, submit the job to the
“shared” queue, use 2 nodes and 8 processors per node we might issue the following sed

command, all one line:

sed -i -e ’s/<Job_Name>/Zombies_Test/’ -e ’s/<Queue_Name>/shared/’

-e ’s/<nodes>/2/’ -e ’s/<ppn>/8/’ repast.pbs

Alternatively the repast.pbs file can be edited by hand. The particulars for each system
may be slightly different so you may need to consult with the reference manual or online
help of the system you will be using.

The next step is to make sure that all the scripts are executable by issuing the command:

chmod +x *.sh

At this point the job is ready for submission and can be submitted from within the unzipped
complete model jar directory via the command:

qsub repast.pbs

The job is submitted to the specified queue and will run when the scheduler decides to
run the job. Depending on the particular setup of the scheduler, you may receive an email
alert when the job has finished running.

Whichever method you use to figure out when the job has completed executing, you can
run an output combiner to combine the data output from the individual simulations that
were run with the command:

./outputcombiner.sh

The combines data will be placed in a combined data directory in the current directory.

8.2. Slurm. The slurm submission script is repast.slurm. It calls repastwrapper slurm.sh
to launch each instance and perform the actual runs. The basic idea is that we calculate
the total number of process available for work, and run an instance on each process. The
number of individual runs for each instance is determined by dividing the total number
of runs (the number of lines in the unrolled parameter file) by the number of processes
and distributing any remainder across instances as appropriate. The submission script
(repast.slurm) defines the total number of processes to allocate by specifying the number
of nodes and the number of tasks per node. The wrapper (repastwrapper slurm.sh) does
the actual math to determine which lines of the full unrolled parameter file that a particular
instance will run, using the unique process id (SLURM PROCID) for each instance.

The first step is specify the required options in ther repast.slurm file. The top section
of the file looks like:

#!/bin/bash

#SBATCH --job-name=<Job_Name>

#SBATCH --partition=<Queue_Name>

#SBATCH --nodes=<nodes>

#SBATCH --ntasks-per-node=<ppn>

#SBATCH --time=<walltime>

REPAST SIMPHONY BATCH RUNS GETTING STARTED 27

#SBATCH --output=output.txt

#SBATCH --mail-user=<email>

#SBATCH --mail-type=all

where, as in the PBS case, the elements in the angled brackets are meant to be edited for
each individual use case. So, for example, if we wanted to name the job “Zombies Test”,
submit the job to the “shared” queue, use 2 nodes and 8 processors per node with a wall
time of 1 hour an email of klopp@lfc.com we might issue the following sed command, all
one line:

sed -i -e ’s/<Job_Name>/Zombies_Test/’ -e ’s/<Queue_Name>/shared/’

-e ’s/<nodes>/2/’ -e ’s/<ppn>/8/’ -e ’s/<walltime>/01:00:00/’

-e ’s/<email>/klopp@lfc.com/’ repast.slurm

Alternatively the repast.slurm file can be edited by hand. The particulars for each system
may be slightly different so you may need to consult with the reference manual or online
help of the system you will be using. You can always add any additional arguments to the
SBATCH or srun arguments, of course. For example, you may have to set mem-per-cpu if
the default on your hpc machine is not adequate.

The next step is to make sure that all the scripts are executable by issuing the command:

chmod +x *.sh

At this point the job is ready for submission and can be submitted from within the unzipped
complete model jar directory via the command:

sbatch repast.slurm

The job is submitted to the specified queue and will run when the scheduler decides to
run the job. Depending on the particular setup of the scheduler, you may receive an email
alert when the job has finished running.

Whichever method you use to figure out when the job has completed executing, you can
run an output combiner to combine the data output from the individual simulations that
were run with the command:

./outputcombiner.sh

The combines data will be placed in a combined data directory in the current directory.

9. Command Line Batch Run Capabilities

The batch runner.jar that comes with Repast Simphony provides a command line
interface for launching the Batch Configuration GUI, for launching batch runs directly and
for creating complete model.jar payloads.

9.1. Launching the Batch Configuration GUI. The regular Batch Configuration GUI
can be launched from the command line with the command:

java -jar batch_runner.jar

9.2. Headless Options. When supplying the -hl or --headless options, the command
line utility will not launch the Batch Configuration GUI. Rather, it provides a command line
interface to either directly execute batch runs or to create complete model.jar payloads.

28 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

9.2.1. Command Line Launching of Batch Runs. The -r or --run options allow for direct
launching of Batch runs from the command line. The easiest way to provide the necessary
configuration information to the Batch system is to additionally specify, using the -c or
--batch config options, a configuration file. The following is an example of a configuration
file:

sample_batch_configuration.properties

model.directory=/path/to/my_model

scenario.directory=/path/to/my_model/my_model.rs

param.file=/path/to/my_model/my_model.rs/parameters.xml

batch.param.file=/path/to/my_model/batch/batch_params.xml

output.directory=model_outputs

output.pattern.1.pattern=hello_*.txt

output.pattern.1.path=hello_folder

output.pattern.1.concatenate=false

output.pattern.1.header=false

output.pattern.2.pattern=custom_output.csv

output.pattern.2.path=combined_custom_output.csv

output.pattern.2.header=true

output.pattern.2.concatenate=true

vm.arguments=-Xmx512M

key.directory=/user/home/.ssh

poll.frequency=0.1

host.0.type=LOCAL

host.0.instances=3

The options specified are the same as those defined within the Batch Configuration GUI3.
With a batch configuration file in place, a headless batch run can be launched via:

java -jar batch_runner.jar -hl -r -c sample_batch_configuration.properties

Properties within the configuration file can be overridden by specifying -model dir for the
model directory, -o or --output dir for the output directory, -s or --scenario dir for
the scenario directory, -p or --params for the parameters file and -b or --batch params

for the batch parameters file.

9.2.2. Create Batch Payloads. When in headless mode, if the -r or --run options are not
specified, only a complete model.jar payload is created in a specified output directory
and the model is not run. This is helpful for automated generation of payloads that are

3 When the “save” button is clicked within the Batch Configuration GUI, a properties file with this
content is saved.

REPAST SIMPHONY BATCH RUNS GETTING STARTED 29

later run on remote resources, e.g., as seen in Sec. 8 or when using the Extreme-scale
Model Exploration with Swift (EMEWS) framework 4.

In addition, as an alternative to a parameter sweep specified by a batch parameter file,
it is sometimes helpful to provide a custom unrolled parameter file to the payload. The
unrolled parameter file, discussed in Sec. 5, is a text file that contains each individual
parameter combination as a separate line. The format for each line is the following:

run_number<tab>param1<tab>val1,param2<tab>val2,...,paramN<tab>valN

where param1,...,paramN correspond to the full set of parameters specified in the model’s
parameters.xml file5. Once an unrolled parameter file is created, it can be specified on
the command line using the -u or --upf options. When the -u,--upf option is used only
the creation of the payload will take place and the -r,--run option cannot be combined
with it.

9.3. Command Line Help. For convenience, the command line utility help menu can be
accessed via:

java -jar batch_runner.jar -h

This generates the usage message:

usage: batch_runner

-b,--batch_params <arg> location of the batch parameters file

(only with -hl option)

-c,--batch_config <arg> location of the batch configuration file

(only with -hl option)

-h,--help show help

-hl,--headless headless batch

-model_dir <arg> location of the model project directory

(needs to be specified if model

defined parameter types are used)

-o,--output_dir <arg> location of the output directory

(only with -hl option)

-p,--params <arg> location of the parameters file

(only with -hl option)

-plugin_dir <arg> location of the eclipse plugin directory

-r,--run run distributed batch

(archive if not specified,

only with -hl option)

-s,--scenario_dir <arg> location of the scenario directory

(only with -hl option)

-u,--upf <arg> location of a custom unrolled parameter file

4 https://emews.github.io
5 An unrolledParamFile.txt, which is the result of “unrolling” a batch parameters.xml file, is produced

within a complete model.jar payload during the regular payload creation process and can be used as
reference.

https://emews.github.io

30 NICK COLLIER, JONATHAN OZIK - REPAST DEVELOPMENT TEAM

(only with -hl and without -r option)

	0. Before We Get Started
	1. Overview
	2. The Batch Run Configuration GUI
	2.1. Model Panel
	2.2. Batch Parameters Panel
	2.3. Hosts Panel

	3. Preparing Your Model for Batch Runs
	4. Batch Run Model Output
	5. An Example
	6. Remote Machine Setup
	6.1. OSX
	6.2. Linux / Unix
	6.3. Windows
	6.4. Amazon Cloud Services

	7. Launching the Batch Run Configuration GUI
	7.1. Launching from Eclipse
	7.2. Launching as a Standalone Application

	8. Running on a Cluster or HPC Machine
	8.1. PBS
	8.2. Slurm

	9. Command Line Batch Run Capabilities
	9.1. Launching the Batch Configuration GUI
	9.2. Headless Options
	9.3. Command Line Help

